Math 1600A Homework 9
Homework 9
项目类别:数学

Math 1600A

Homework 9

Fall 2024

[5]  1.  For each of the following statements, determine whether the statement is true or false. If the statement is true, give a brief (one or two line) explanation of why the statement is true. If the statement is false, give an explicit numerical counterexample to the statement. No marks will be given without correct justification.

(a)  For any natural number m, the product of two non-zero numbers in Zm is non-zero.

(b) There are exactly 2 solutions to 4x = 2 in Z6.

(c) If T : R2  → R2 is a rotation about the origin such that T4 = I2, then T = I2 or T = -I2.

(d) Ifv ∈ Rn  is an eigenvector of an n × n matrix A with eigenvalue 0, then rank(A) < n.

(e) If x is a steady state vector for a Markov chain with transition matrix P then

(P2 + 2P)(x) = 3x.

[3]  2.  Consider the ISBN-10 code 3-5d0-96203-4. Recall that the check vector for ISBN-10 codes is

c = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1] ∈ Z 11(10).

Find the missing digit d. Show your work.

3.  A Math 1600A student always submits their Gradescope assignments on Friday, Saturday or Sunday. If a student submits an assignment on a particular day of the week, then they will submit the next assignment on the same day 10% of the time, the later of the remaining two days 60% of the time and the remaining day 30% of the time.

[1]        (a)  Draw the state diagram of the associated Markov chain.

[1]        (b)  Find the transition matrix of the associated Markov chain.

[3]        (c)  If the student submits the first assignment on Friday, what is the probability that the student will submit the third assignment on Sunday?

[4]        (d)  What are the long-term probabilities of the student submitting an assignment on each of Friday, Saturday and Sunday, respectively?

4. Let T : R3  → R3  be a linear transformation determined by

[1]        (a)  Find the standard matrix of T.

[4]        (b)  Show that the standard matrix of T is invertible and find its inverse.

[1]        (c) Find

5.  Consider the matrix

[3]        (a)  Find the eigenvalues of A.

[4]        (b)  Find a basis for each eigenspace of A.

留学ICU™️ 留学生辅助指导品牌
在线客服 7*24 全天为您提供咨询服务
咨询电话(全球): +86 17530857517
客服QQ:2405269519
微信咨询:zz-x2580
关于我们
微信订阅号
© 2012-2021 ABC网站 站点地图:Google Sitemap | 服务条款 | 隐私政策
提示:ABC网站所开展服务及提供的文稿基于客户所提供资料,客户可用于研究目的等方面,本机构不鼓励、不提倡任何学术欺诈行为。