EECE-7204 Applied Probability & Stochstic Processes FALL-2024
Homework-6 Problem Set
项目类别:电气电力工程

P6.1 A random sequence Xis defined by XAsin(Ωn), n ≥ 0, in which A and Ω are discrete random variables described by their joint probability mass function (pmf)

Determine:

(a)  the marginal density fX3 (x),

(b)  the joint density fX1,X5 (xy),

(c)  the mean sequence μX n),

(d)  the auto-correlation bi-sequence R Xmn), and

(e)  whether the sequence Xn is

 a strict-sense stationary,

 a wide-sense stationary,

 an independent random sequence,

•  an uncorrelated random sequence, and

 an orthogonal random sequence.

P6.2 Stark/Woods Text Problem 8.10 (Page 528).

For a better clarity, this problem is modified as follows.

(a)  The components, of the random-10 vector satisy “non-causal” recursive equa-

tions, given by

with “initial” and “final” equations, respectively, given by

Using (1) and (2), arrange the above 10 scalar equations in the vector form. as

BX CW (3)

where B and are 10 × 10 matrices of numbers, derived from (1) and (2), and W = { Wi} is a random-10 vector. Now solve for the vector and arrange the solution as

By carefully examining the numbers in matrix A, verify that the scalar equations for Xi are given by

You will need equation (5) to solve the following parts. What is the value of ρ in (5)?

(b)  Determine the mean vector μX .

(c)  Determine the ACVM KX .

(d)  Write an expression for the multidimensional pdf, fX (x), of the random vector X.

P6.3 Stark/Woods Text Problem 8.21 (Page 531).

P6.4 Stark/Woods Text Problem 8.29 (Page 534).

P6.5 Let X n] be an independent and identically distributed (IID) random sequence with PDF, at each n, given by fX (xn) = 2xu (x) − u( 1)]. Another random sequence Y n] is defined as

(a)  Determine μn] of X n].

(b)  Determine R X n 1, n2] of X n].

(c)  Determine the mean sequence μn], ≥ 1 of Y n].

(d)  Determine the variance sequence σY(2) n], ≥ 1 of Y n].

(e)  Let Y n 1] − Y n2], n 1 , n2 ≥ 1 be a random variable. Determine the variance σW(2) of the random variable W.

P6.6 Stark/Woods Text Problem 8.48. (Page 539).

P6.7 Stark/Woods Text Problem 8.51. (Page 539-540).

P6.8 [MATLAB Problem]

In this problem you will generate = 100 sample sequences of length = 1000 of the random- walk process with step-size = 1 and analyze its statistical properties.

(a)  First generate M independent sequences W n] of length N + 1 in which each sample takes value equal to +S or −S with probability 1/2.   Now perform. cumulative sum  (i.e., use the MATLAB function cumsum) on each sample sequence to obtain realizations of the random-walk process X n] of length N. Plot all sample sequences in one figure. Submit a printout of your script. and a printout of your plot.

(b)  Estimate and plot the mean sequence μn] by averaging over realizations. How does it compare with the actual mean sequence given in the lecture notes? Submit a printout of your script. and a printout of your plot.

(c)  Estimate and plot the variance σX(2)[ n] by averaging over realizations. How does it com- pare with the actual variance sequence given in the lecture notes?  Submit a printout of your script. and a printout of your plot.

(d)  Comment on the stationarity of the random-walk process.

留学ICU™️ 留学生辅助指导品牌
在线客服 7*24 全天为您提供咨询服务
咨询电话(全球): +86 17530857517
客服QQ:2405269519
微信咨询:zz-x2580
关于我们
微信订阅号
© 2012-2021 ABC网站 站点地图:Google Sitemap | 服务条款 | 隐私政策
提示:ABC网站所开展服务及提供的文稿基于客户所提供资料,客户可用于研究目的等方面,本机构不鼓励、不提倡任何学术欺诈行为。