AMATH 481/581 Autumn Quarter 2024
Homework 5
项目类别:数学

Homework 5:  Vorticity-Streamfunction Equations

DUE: Friday, November 15 at midnight

The time evolution of the vorticity ω(x,y, t) and streamfunction ψ(x,y, t) are given by the governing equations:

ωt + [ψ,ω] = ν▽2ω                                                              (1)

where [ψ,ω] = ψxωy  − ψωx , 2  = x(2) + y(2), and the streamfunction satisfies

▽2 ψ = ω                                                                        (2)

Initial Conditions: Assume a Gaussian shaped mound of initial vorticity for ω(x,y,0). In particular, assume that the vorticity is elliptical with a ratio of 4:1 or more between the width of the Gaussian in the x- and y-directions.  I’ll let you pick the initial amplitude (one is always a good start).  In most applications, the diffusion is a small parameter. This fact helps the numerical stability considerably. Here, take ν = 0.001.

Boundary Conditions: Assume periodic boundary conditions for both vorticity and streamfunction. Also, I’ll let you experiment with the size of your domain. One of the restrictions is that the initial Gaussian lump of vorticity should be well-contained within your spatial domains.

Numerical Integration Procedure: Discretize (2nd order) the vorticity equation and use ODE45 to step forward in time.

(a) Solve these equations where for the streamline  (▽2 ψ  = ω) use a Fast Fourier Transform. (NOTE: set kx (1) = ky (1) = 10 6).

ANSWERS: With x,y ∈ [−10, 10], n = 64, ω(x,y,0) = exp(−x2  − y2 /20) and tspan = 0 : 0.5 : 4, write out the solution of your numerical evolution from ode45 as A1.

(b)  Solve these equations where for the streamline  (▽2 ψ  =  ω)  use  the  following  methods  (NOTE:  Take A(1, 1) = 2 instead of A(1, 1) = −4):

  A/b

  LU decomposition

  BICGSTAB

  GMRES

Compare all of these methods with your FFT routine developed in part (a) (checkout the CPUTIME command for MATLAB). In particular, keep track of the computationl speed of each method.  Also, for BICGSTAB and GMRES, for the first few times solving the streamfunction equations, keep track of the residual as a function of the number of iterations needed to converge to the solution.  Note that you should adjust the tolerance settings in BICGSTAB and GMRES to be consistent with your accuracy in the time-stepping.  Experiment with the tolerance to see how much more quickly these iteration schemes converge.

ANSWERS: With x,y ∈ [−10, 10], n = 64, ω(x,y,0) = exp(−x2  − y2 /20) and tspan = 0 : 0.5 : 4, write out the solution of your numerical evolution from ode45 as A2 for A\b and A3 for the LU method.

(c) Try out these initial conditions with your favorite/fastest solver on the streamfunction equations.

•  Two oppositely “charged” Gaussian vorticies next to each other, i.e.  one with positive amplitude, the other with negative amplitude.

•  Two same charged Gaussian vorticies next to each other.

  Two pairs of oppositely “charged” vorticies which can be made to collide with each other.

•  A random assortment (in position,strength, charge, ellipticity, etc.) of vorticies on the periodic domain. Try 10-15 vorticies and watch what happens.

(d) Make a 2-D movie of the dynamics.   Color  and coolness are key here.   I would very much like to see everyone’s movies and you can put these up on your github.

留学ICU™️ 留学生辅助指导品牌
在线客服 7*24 全天为您提供咨询服务
咨询电话(全球): +86 17530857517
客服QQ:2405269519
微信咨询:zz-x2580
关于我们
微信订阅号
© 2012-2021 ABC网站 站点地图:Google Sitemap | 服务条款 | 隐私政策
提示:ABC网站所开展服务及提供的文稿基于客户所提供资料,客户可用于研究目的等方面,本机构不鼓励、不提倡任何学术欺诈行为。