Probability and Statistics
Probability and Statistics
项目类别:统计学
Hello, dear friend, you can consult us at any time if you have any questions, add  WeChat:  zz-x2580

Suppose X is a two-class mixture model, given as


where Z ∼ Bernoulli(p).

(a) Write down the marginal density function fX(x).

(b) State the law of iterated expectation, and use it to fifind the expectation of X.

(c) State the law of total variance, and use it to fifind the variance of X.

 

 2.  

The continuous random variable X has probability density function

fX(x|θ) = θxΘ–1                                 0 < x < 1, θ > 0.

A random sample (X1  , X2, . . . , Xn) is used to estimate the parameter θ.

(a) Defifine what it means for a random variable to be continuous.

(b) Determine the cumulative distribution of X.

(c) If θ is known, explain how a random sample from U ∼ Uniform (0, 1) could be used to produce a random sample with distribution X, proving any general results that you use.

(d) Compute the method of moments estimator of θ.

(e) Compute the maximum likelihood estimator of θ. (Remember to check explicitly that your estimator does indeed maximize the likelihood.)

(f) Let Y denote the method of moments estimator of θ. In the case n = 1, show that the sampling distribution of Y has density

留学ICU™️ 留学生辅助指导品牌
在线客服 7*24 全天为您提供咨询服务
咨询电话(全球): +86 17530857517
客服QQ:2405269519
微信咨询:zz-x2580
关于我们
微信订阅号
© 2012-2021 ABC网站 站点地图:Google Sitemap | 服务条款 | 隐私政策
提示:ABC网站所开展服务及提供的文稿基于客户所提供资料,客户可用于研究目的等方面,本机构不鼓励、不提倡任何学术欺诈行为。