generating function
function
项目类别:物理

The generating function, g(x, t), for the Legendre polynomials, Pn(x) is given by:

(a) Use this generating function to derive explicit expressions for Pn(x) with 0 ≦ ≦ 3.

(b) Show from the generating function, without using explicit expressions for Pn(x), that Pn(x) = (1)nPn(x).

The electrostatic potential at a distance r from a point charge is equal, in some units, to Q/r. A charge +2is placed at the origin and charges are placed on the z-axis at ±as shown below.

(c) Find the leading order term in the electrostatic potential at a remote point with polar coordinates r, θ such that >> a. [Hint: Use the expansion of g(x, tabove with a/r

(d) Now, assuming that the point is close to the origin, << a, find the potential at this point neglecting contributions proportional to powers of r/a.


Consider a space of real functions on an interval [11], where the inner product,

(a) Write the eigenvalue problem, M(y) = λy, in Sturm–Liouville form and hence determine the weight function w(x).

(b) Formulate the conditions for the Sturm–Liouville operator, L = w(x)M, to be self-adjoint in the space , and hence state boundary conditions that must be satisfied by any function f(x) ∈ .

(c) Use the generalised Rodrigues formula (see Lecture 17) for orthogonal polynomials generated by the operator M to find its first four eigenfunctions and all its eigenvalues.

(d) Find a matrix representation of M in the monomial basis {|un} ≡ {xn} for 0 ≦ ≦ 3.

(e) Use the matrix representation found in part (d) to determine the eigenvalues and eigenfunctions of M for ≦ 3, and compare with those found in part (c).

You do not need to normalise the eigenfunctions that should coincide with those of part (c) up to an overall factor .

The Schrödinger equation for the ground state of a particle of mass in a potential (x) is

(a) Sketch the potential (x).

留学ICU™️ 留学生辅助指导品牌
在线客服 7*24 全天为您提供咨询服务
咨询电话(全球): +86 17530857517
客服QQ:2405269519
微信咨询:zz-x2580
关于我们
微信订阅号
© 2012-2021 ABC网站 站点地图:Google Sitemap | 服务条款 | 隐私政策
提示:ABC网站所开展服务及提供的文稿基于客户所提供资料,客户可用于研究目的等方面,本机构不鼓励、不提倡任何学术欺诈行为。